Quantification of lamellar orientation in corneal collagen using second harmonic generation images.
نویسندگان
چکیده
Second harmonic generation (SHG) is a well-established optical modality widely used in biomedical optics to image collagen based tissues. The coherent signal of the forward direction SHG produces a high resolution image that can resolve individual fibers (groups of fibrils). In highly ordered collagen lamellae, such as in the corneal stroma, it is important to determine the orientation of the fibers as they contribute significantly to the biomechanics of the tissue. However, due to the crimped structure of the fibers, it is challenging to robustly determine their orientation using an independent computational method, compared to the straight fibers problem. Previous work in the field used the polarization of the fundamental or other techniques involving a more manual selection of the orientation, in order to differentiate between various directions in corneal structures. Yet those lack accuracy and independency. We present a robust independent technique to determine the orientation of the fibers in the corneal structure. The experimental results presented here, taken from different lamellae, demonstrate strongly the correct orientation.
منابع مشابه
Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images
The spatial organization of stromal collagen of ex-vivo corneas has been quantified in adaptive-optics second harmonic generation (SHG) images by means of an optimized Fourier transform (FT) based analysis. At a particular depth location, adjacent lamellae often present similar orientations and run parallel to the corneal surface. However this pattern might be combined with interweaved collagen...
متن کاملSecond-harmonic imaging microscopy of normal human and keratoconus cornea.
PURPOSE The purpose of this study was to evaluate the ability of second-harmonic imaging to identify differences in corneal stromal collagen organization between normal human and keratoconus corneas. METHODS Six normal corneas from eye bank donors and 13 corneas of patients with keratoconus, obtained after penetrating keratoplasty were examined. A femtosecond titanium-sapphire laser with 800-...
متن کاملAnalysis of corneal stroma organization with wavefront optimized nonlinear microscopy.
PURPOSE To investigate the organization of stromal collagen in healthy ex vivo corneas of different species from second harmonic generation (SHG) microscopy images. METHODS A custom backscattered nonlinear microscope has been used to study the corneal structure of different species: porcine, bovine, rabbit, rat, chicken, and humans. The instrument uses a femtosecond laser for illumination, a ...
متن کاملSecond harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa
Pseudomonas aeruginosa is a pathogenic gram-negative organism that has the ability to cause blinding corneal infections following trauma and during contact lens wear. In this study, we investigated the directional movement and orientation of an invasive corneal isolate of P. aeruginosa in the corneal stroma during infection of ex vivo and in vivo rabbit corneas using multiphoton fluorescence an...
متن کاملCharacterization of Tissue-Engineered Posterior Corneas Using Second- and Third-Harmonic Generation Microscopy
Three-dimensional tissues, such as the cornea, are now being engineered as substitutes for the rehabilitation of vision in patients with blinding corneal diseases. Engineering of tissues for translational purposes requires a non-invasive monitoring to control the quality of the resulting biomaterial. Unfortunately, most current methods still imply invasive steps, such as fixation and staining, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 37 16 شماره
صفحات -
تاریخ انتشار 2012